Hi-Hi-PC.ru Hi-Fi-звук на компьютере

StereoHead.ru все о наушниках
1 1 1 1 1 Рейтинг 5.00 (1 голос)

 

1.jpg

Основные элементы конструкции электродинамического излучателя прямого излучения (на примере НЧ-головки Elac)

 

Продолжая раскладывать по полочкам полезные знания, касающиеся аудиотехники High End, мы переходим к огромной, почти необъятной теме: акустическим системам и их компонентам. Надо сказать, что на данную тему, в отличие от многих других в звукотехнике, есть несколько весьма полезных статей и книг, изданных относительно недавно, уже в постсоветское время. Все они принадлежат перу доктора технических наук Ирины Аркадьевны Алдошиной и всем интересующимся настоятельно рекомендуются к прочтению. Во вводной части «Руководства» я постараюсь изложить современную терминологию и кратко описать элементы только одной составной части акустической системы: головки излучателя (для краткости будем называть ее излучателем).

Конформизм и консерватизм

Начнем с самых распространенных излучателей в мире: электродинамических диффузорных. Их выпускают в миллиардных количествах. Ими комплектуются и копеечные радиоприемники, и страшно дорогие акустические системы класса High

End. Излучатель такого типа был создан уже в начале 20-х годов прошлого века и с тех пор принципиально почти не изменился.

Определение электродинамического излучателя

При классификации по типу электромеханического преобразования

электродинамическим диффузорным называется излучатель, в котором модуляция электромагнитного поля звуковым сигналом приводит в движение излучающий элемент в виде конуса или купола (диффузор). На практике это реализуется так:
1) проводник в виде витков провода на полом каркасе (звуковой катушке) помещен в постоянное магнитное поле внешнего магнита;
2) проводник (звуковая катушка) соединен с диффузором, который способен излучать звуковые колебания непосредственно в окружающую среду (прямое излучение, то есть без рупора);
3) при протекании переменного тока по проводнику перпендикулярно к направлениям тока и постоянного магнитного поля образуется переменное электромагнитное поле.

Возникающая механическая сила вызывает движение диффузора в направлении, перпендикулярном постоянному магнитному полю, и, следовательно, возбуждает колебания воздуха (звук) соответственно изменениям тока в звуковой катушке.

3.jpg

4.jpg

2.jpg

Как это делается

Итак, принцип простой. Что дальше? Применить идеологию хай-энда, скажет читатель. Диффузор из кожи или из специальной бумаги, катушка из серебряного провода, магнит из зол.... Стоп, скажу я. Оно так не работает, как выражается Владимир Шушурин-Ламм.

5.jpg

Иллюстративный сборочный чертеж среднечастотного электродинамического излучателя (на примере СЧ-головки B & W)

А как сделать, чтобы работало?

А надо всего-навсего, чтобы наш электромеханический преобразователь смог сделать из звукового электрического сигнала звуковую волну с исчезающе малыми искажениями, то есть чтобы преобразование было линейным.

Для этого пока не нужно знать, чем серебряный провод лучше медного. Будем последовательны.

Электродинамический излучатель состоит из трех функциональных частей, работающих в тесной взаимосвязи. Это магнитная система (аналог статора у электродвигателя), подвижная система (аналог ротора) и каркасная система, называемая диф-фузородержателем.

6.jpg

Магнитная цепь

Как мы уже поняли, звуковая катушка (проводник) толкает диффузор вперед или назад в зависимости от того, каковы амплитуда и направление переменного тока, в ней протекающего. Чтобы получить точную кальку формы тока (линейность), постоянное магнитное поле должно быть идеально равномерным не только вокруг проводника в положении покоя, но и во всем диапазоне его смещений вперед-назад. Это во-первых. Во вторых, механическая сила, порождаемая током, должна быть эффективной, то есть колебания диффузора должны приводить к нужной по техзаданию величине звукового давления. Следовательно, магнитное поле не только должно быть симметрично и линейно вокруг звуковой катушки, но и величине его (то есть напряженности) следует превысить необходимый предел, иначе вместо полноценного звучания получится пшик...

Используя в качестве источника поля постоянный магнит, мы должны создать ему магнитопровод и сконцентрировать его поля в коридоре движений катушки, который принято называть воздушным зазором. В наиболее распространенном случае постоянный магнит имеет форму кольца, магнитопровод начинается как Т-образный элемент из магнитомягкой стали, а воздушный зазор получается в виде цилиндрической щели между поперечной чертой буквы Т и кольцевым заключительным элементом магнитопровода.

«Основа» буквы Т называется задним фланцем, ее поперечная черта — керном, а замыкающее кольцо — верхним фланцем. Обычно керн и задний фланец изготавливаются раздельно: керн в виде цилиндра, задний фланец — в виде кольца с центральным отверстием, куда потом запрессовывается керн. Если керн запрессовать неровно, то о симметрии магнитного поля в зазоре можно забыть.

7.jpg

Подвижная система

Движущий элемент подвижной системы — проводник, звуковая катушка. Это несколько слоев изолированного (обычно эмалированного) тонкого провода, намотанного на цилиндрический каркас. Слоев таких, как правило, четное число, чтобы начало и конец обмотки можно было вывести в одну сторону. Упомянутая выше механическая сила, приводящая катушку (и подвижную систему) в движение, определяется как произведение силы тока на длину проводника и на величину индукции магнитного поля в зазоре. Сила эта, повторим, действует в осевом направлении.

8.jpg

9.jpg

Линейность преобразования ток — звуковое давление в подобной системе может быть обеспечена только тогда, когда геометрически катушка идеально расположена по центральной оси воздушного зазора, то есть отцентрована. Колебания катушки (и подвижной системы) должны быть строго поступательными и соосными.

Центрирование катушки в зазоре и отсутствие крутильных колебаний подвижной системы обеспечивается ее гибким подвесом. Гибкий подвес эффективно выполняет свою функцию, если самоудваивается. Иначе говоря, их на практике два: один у места склейки звуковой катушки (он называется центрирующей шайбой), а второй у края диффузора (он называется подвесом).

Диффузородержатель

Это малозаметная, но многофункциональная деталь, важность которой нередко недооценивается. Он помогает механически соединить магнитную цепь и подвижную систему — раз (нижняя часть его крепится к переднему фланцу магнитной цепи). Он служит опорой для упругого подвеса (имея две концентрические полки: для приклейки подвеса и центрирующей шайбы) — два. Наконец, именно через отверстия диффузородержате-ля излучатель монтируется в корпус акустической системы.

На этом пока закончим описательную часть. Поизучайте рисунок, чертежи и фото.

Подытоживая, отметим, что начальная задача при разработке излучателя для аудиосистемы High End должна предусматривать мощное и симметричное магнитное поле в воздушном зазоре на всей дистанции хода звуковой катушки. Без выполнения указанного требования никакого хай-энда, скорее всего, не будет. Более того, упомянутый постулат необходим, но далеко не достаточен. Но об этом позже.

В следующей части мы будем изучать, как те или иные материалы и конструкторские решения названных выше узлов излучателя влияют на выполнение его основной задачи: линейное преобразование электрических колебаний в акустические.

10.jpg

По материалам издания АудиоМагазин
Автор Сергей ТАРАНОВ

Комментарии  

0 #1 Артем 18.05.2017 22:08
Спасибо. Очень интересно.

Добавить комментарий


Защитный код
Обновить